Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640229

RESUMO

Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is largely incurable in the metastatic setting. ccRCC is characterized by excessive lipid accumulation that protects cells from stress and promotes tumor growth, suggesting that the underlying regulators of lipid storage could represent potential therapeutic targets. Here, we evaluated the regulatory roles of GPR1 and CMKLR1, two G-protein coupled receptors of the pro-tumorigenic adipokine chemerin that is involved in ccRCC lipid metabolism. Both genetic and pharmacological suppression of either receptor suppressed lipid formation and induced multiple forms of cell death, including apoptosis, ferroptosis and autophagy, significantly impeding ccRCC growth in cell lines and patient derived xenograft (PDX) models. Comprehensive lipidomic and transcriptomic profiling of receptor competent and depleted cells revealed overlapping and unique signaling of the receptors granting control over triglyceride synthesis, ceramide production, and fatty acid saturation and class production. Mechanistically, the receptors both enforced suppression of the triglyceride lipase ATGL but also demonstrated distinct functions, such as the unique ability of CMKLR1 to control lipid uptake through regulation of SREBP1c and the CD36 scavenger receptor. Treating PDX models with the CMKLR1-targeting small molecule α-NETA led to a dramatic reduction of tumor growth, lipid storage, and clear cell morphology. Together, these findings provide mechanistic insight into lipid regulation in ccRCC and identify a targetable axis at the core of the histological definition of this tumor that could be exploited therapeutically.

2.
Am J Surg Pathol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369783

RESUMO

Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints (RB1, CDKN2A). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.

3.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38105987

RESUMO

SIRT5 is a sirtuin deacylase that represents the major activity responsible for removal of negatively-charged lysine modifications, in the mitochondrial matrix and elsewhere in the cell. In benign cells and mouse models, under basal non-stressed conditions, the phenotypes of SIRT5 deficiency are generally quite subtle. Here, we identify two homozygous SIRT5 variants in human patients suffering from severe mitochondrial disease. Both variants, P114T and L128V, are associated with reduced SIRT5 protein stability and impaired biochemical activity, with no evidence of neomorphic or dominant negative properties. The crystal structure of the P114T enzyme was solved and shows only subtle deviations from wild-type. Via CRISPR-Cas9, we generate a mouse model that recapitulates the human P114T mutation; homozygotes show reduced SIRT5 levels and activity, but no obvious metabolic abnormalities, neuropathology or other gross evidence of severe disease. We conclude that these human SIRT5 variants most likely represent severe hypomorphs, and are likely not the primary pathogenic cause of the neuropathology observed in the patients.

4.
Blood ; 142(25): 2159-2174, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37616559

RESUMO

ABSTRACT: Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Dano ao DNA , Mitocôndrias/genética , Mitocôndrias/metabolismo , Cromatina
5.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37418003

RESUMO

PTEN is a crucial negative regulator of the INS/PI3K/AKT pathway and is one of the most commonly mutated tumor suppressors in cancer. Global overexpression (OE) of PTEN in mice shifts metabolism to favor oxidative phosphorylation over glycolysis, reduces fat mass, and extends the lifespan of both sexes. We demonstrate that PTEN regulates chaperone-mediated autophagy (CMA). Using cultured cells and mouse models, we show that PTEN OE enhances CMA, dependent upon PTEN's lipid phosphatase activity and AKT inactivation. Reciprocally, PTEN knockdown reduces CMA, which can be rescued by inhibiting class I PI3K or AKT. Both PTEN and CMA are negative regulators of glycolysis and lipid droplet formation. We show that suppression of glycolysis and lipid droplet formation downstream of PTEN OE depends on CMA activity. Finally, we show that PTEN protein levels are sensitive to CMA and that PTEN accumulates in lysosomes with elevated CMA. Collectively, these data suggest that CMA is both an effector and a regulator of PTEN.


Assuntos
Autofagia Mediada por Chaperonas , PTEN Fosfo-Hidrolase , Animais , Feminino , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação Oxidativa , Glicólise , Lisossomos/metabolismo , Linhagem Celular
6.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485877

RESUMO

Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C-expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H- but not K8-K393R-induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C-mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.


Assuntos
Queratinas , Sirtuína 2 , Animais , Humanos , Camundongos , Proteínas de Filamentos Intermediários , Queratinas/genética , Queratinas/metabolismo , Mutação , Sirtuína 2/genética
7.
N Engl J Med ; 388(26): 2422-2433, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37140166

RESUMO

BACKGROUND: Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood. METHODS: We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene POT1 and noncarrier relatives. RESULTS: A total of 17 POT1 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the POT1 mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). POT1 mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 POT1 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic DNMT3A and JAK2 hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, POT1 mutation carriers maintained telomere length over the course of 2 years. CONCLUSIONS: POT1 mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).


Assuntos
Envelhecimento , Hematopoiese Clonal , Neoplasias , Telômero , Humanos , Envelhecimento/genética , Hematopoiese Clonal/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação , Neoplasias/genética , Complexo Shelterina/genética , Síndrome , Telômero/genética , Telômero/fisiologia , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética
8.
Brain ; 146(10): 4191-4199, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37170631

RESUMO

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Assuntos
Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Ubiquinona/genética
9.
J Biol Chem ; 299(3): 102960, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736426

RESUMO

Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sirtuínas , Animais , Humanos , Camundongos , Ciclo do Ácido Cítrico , Nefropatias Diabéticas/metabolismo , Glicólise , Redes e Vias Metabólicas , Sirtuínas/metabolismo , Índios Norte-Americanos
10.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711472

RESUMO

Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.

11.
Eur J Med Chem ; 247: 115024, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36543033

RESUMO

Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase. It is emerging as a promising target for the development of drugs to treat cancer and metabolism-related diseases. In this study, we screened 5000 compounds and identified a hit compound 14 bearing a pyrazolone functional group as a novel SIRT5-selective inhibitor. Structure-based optimization of 14 resulted in compound 47 with an IC50 value of 0.21 ± 0.02 µM and a 100-fold improved potency. Compound 47 showed substantial selectivity for SIRT5 over SIRT1-3 and SIRT6. Biochemical studies suggest that 47 does not occupy the NAD + -binding pocket and acts as a substrate-competitive inhibitor. The identified potent and selective SIRT5 inhibitors allow further studies as research tools and therapeutic agents.


Assuntos
Neoplasias , Pirazolonas , Sirtuínas , Humanos , Sirtuínas/metabolismo , NAD/química , NAD/metabolismo , Lisina , Pirazolonas/farmacologia
12.
J Med Chem ; 65(20): 14015-14031, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36228194

RESUMO

Sirtuins are NAD+-dependent protein deacylases involved in metabolic regulation and aging-related diseases. Specific activators for seven human Sirtuin isoforms would be important chemical tools and potential therapeutic drugs. Activators have been described for Sirt1 and act via a unique N-terminal domain of this isoform. For most other Sirtuin isoforms, including mitochondrial Sirt3-5, no potent and specific activators have yet been identified. We here describe the identification and characterization of 1,4-dihydropyridine-based compounds that either act as pan Sirtuin activators or specifically stimulate Sirt3 or Sirt5. The activators bind to the Sirtuin catalytic cores independent of NAD+ and acylated peptides and stimulate turnover of peptide and protein substrates. The compounds also activate Sirt3 or Sirt5 in cellular systems regulating, e.g., apoptosis and electron transport chain. Our results provide a scaffold for potent Sirtuin activation and derivatives specific for Sirt3 and Sirt5 as an excellent basis for further drug development.


Assuntos
Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , NAD , Sirtuína 1 , Isoformas de Proteínas/metabolismo , Peptídeos
13.
Aging Cell ; 21(12): e13724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179270

RESUMO

Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)-1,3-butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2-activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combination of Rapa and Aca started at 9 months and led to a longer lifespan than in either of the two prior cohorts of mice treated with Rapa only, suggesting that this drug combination was more potent than either of its components used alone. In females, lifespan in mice receiving both drugs was neither higher nor lower than that seen previously in Rapa only, perhaps reflecting the limited survival benefits seen in prior cohorts of females receiving Aca alone. Capt led to a significant, though small (4% or 5%), increase in female lifespan. Capt also showed some possible benefits in male mice, but the interpretation was complicated by the unusually low survival of controls at one of the three test sites. BD seemed to produce a small (2%) increase in females, but only if the analysis included data from the site with unusually short-lived controls. None of the other 4 tested agents led to any lifespan benefit. The C2017 ITP dataset shows that combinations of anti-aging drugs may have effects that surpass the benefits produced by either drug used alone, and that additional studies of captopril, over a wider range of doses, are likely to be rewarding.


Assuntos
Acarbose , Sirolimo , Camundongos , Masculino , Feminino , Animais , Acarbose/farmacologia , Sirolimo/farmacologia , Captopril/farmacologia , Longevidade , Envelhecimento
14.
Eur J Med Chem ; 241: 114623, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932566

RESUMO

The sirtuin deacetylase SIRT5 plays important roles in regulating multiple metabolic pathways, and potentially represents an attractive target for the treatment of several human diseases, especially cancer. In this study, we report the identification of the hit compound 11 bearing a 2-hydroxybenzoic acid functional group as a novel SIRT5-selective inhibitor via our medium-throughput thermal shift screening assay. Hit 11 stabilizes SIRT5 in a dose-dependent manner and shows moderate inhibitory activity against SIRT5 and high subtype selectivity over SIRT1, 2, and 3 in a trypsin coupled enzyme-based assay. The carboxylic acid and the adjacent hydroxyl group of 11 are essential for maintaining activity. To further improve the potency of compound 11, a lead optimization was carried out, resulting in compound 43 with a 10-fold improved potency. Overall, compound 11 represents a promising new chemical scaffold for further investigation to develop SIRT5-selective inhibitors.


Assuntos
Neoplasias , Sirtuínas , Ensaios Enzimáticos , Humanos , Ácido Salicílico , Sirtuína 1 , Sirtuínas/metabolismo
15.
Sci Rep ; 12(1): 12258, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851833

RESUMO

Heart failure (HF) is the inability of the heart to pump blood sufficiently to meet the metabolic demands of the body. HF with reduced systolic function is characterized by cardiac hypertrophy, ventricular fibrosis and remodeling, and decreased cardiac contractility, leading to cardiac functional impairment and death. Transverse aortic constriction (TAC) is a well-established model for inducing hypertrophy and HF in rodents. Mice globally deficient in sirtuin 5 (SIRT5), a NAD+-dependent deacylase, are hypersensitive to cardiac stress and display increased mortality after TAC. Prior studies assessing SIRT5 functions in the heart have all employed loss-of-function approaches. In this study, we generated SIRT5 overexpressing (SIRT5OE) mice, and evaluated their response to chronic pressure overload using TAC. Compared to littermate controls, SIRT5OE mice were protected against adverse functional consequences of TAC, left ventricular dilation and impaired ejection fraction. Transcriptomic analysis revealed that SIRT5 suppresses key HF sequelae, including the metabolic switch from fatty acid oxidation to glycolysis, immune activation, and fibrotic signaling pathways. We conclude that SIRT5 is a limiting factor in the preservation of cardiac function in response to experimental pressure overload.


Assuntos
Insuficiência Cardíaca , Sirtuínas , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Sirtuínas/metabolismo , Remodelação Ventricular
16.
Elife ; 112022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815941

RESUMO

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Aspartato Aminotransferase Mitocondrial/genética , Aspartato Aminotransferase Mitocondrial/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a Ácido Graxo , Humanos , Camundongos , NAD/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácido Pirúvico/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Curr Opin Toxicol ; 322022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37193357

RESUMO

Cadmium (Cd) is a widespread toxic pollutant that affects millions of individuals worldwide. Cd exposure in humans occurs primarily through consumption of contaminated food and water, cigarette smoking, and industrial applications. The kidney proximal tubular (PT) epithelial cells are the primary target of Cd toxicity. Cd-induced injury to PT cells impedes tubular reabsorption. Despite the many long-term sequelae of Cd exposure, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure. In this review, we summarize recent work linking Cd-mediated damage to epigenetic perturbations - DNA methylation, and levels of histone modifications, including methylation and acetylation. New insights into the links between Cd intoxication and epigenetic damage will contribute to an improved understanding of Cd's pleiotropic impacts on cells, and perhaps lead to new, mechanism-based treatments for this condition.

18.
J Gerontol A Biol Sci Med Sci ; 77(2): 215-220, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34448851

RESUMO

The diabetes drug canagliflozin extends life span in male mice. Since malignant neoplasms are the major cause of death in most mouse strains, this observation suggests that canagliflozin might exert anti-neoplastic effects in male mice. Here, we treated a mouse neoplasia model, the adenoma-prone ApcMin/+ strain, with canagliflozin, to test the effects of this drug on intestinal tumor burden. Surprisingly, canagliflozin increased the total area of intestine involved by adenomas, an effect most marked in the distal intestine and in female mice. Immunohistochemical analysis suggested that canagliflozin may not influence adenoma growth via direct SGLT1/2 inhibition in neoplastic cells. Our results are most consistent with a model where canagliflozin aggravates adenoma development by altering the anatomic distribution of intestinal glucose absorption, as evidenced by increases in postprandial GLP-1 levels driven by delayed glucose absorption. We hypothesize that canagliflozin exacerbates adenomatosis in the ApcMin/+ model via complex, cell-non-autonomous mechanisms, and that sex differences in GLP-1 responses may in part underlie sexually dimorphic effects of this drug on life span.


Assuntos
Adenoma , Inibidores do Transportador 2 de Sódio-Glicose , Adenoma/tratamento farmacológico , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose , Intestinos , Masculino , Camundongos , Transportador 2 de Glucose-Sódio/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
19.
J Vis Exp ; (175)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633378

RESUMO

Under steady state, hematopoietic stem cells (HSCs) remain largely quiescent and are believed to be predominantly reliant on glycolysis to meet their energetic needs. However, under stress conditions such as infection or blood loss, HSCs become proliferative and rapidly produce downstream progenitor cells, which in turn further differentiate, ultimately producing mature blood cells. During this transition and differentiation process, HSCs exit from quiescence and rapidly undergo a metabolic switch from glycolysis to oxidative phosphorylation (OxPHOS). Various stress conditions, such as aging, cancer, diabetes, and obesity, can negatively impact mitochondrial function and thus can alter the metabolic reprogramming and differentiation of HSCs and progenitors during hematopoiesis. Valuable insights into glycolytic and mitochondrial functions of HSCs and progenitors under normal and stress conditions can be gained through the assessment of their extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), which are indicators of cellular glycolysis and mitochondrial respiration, respectively. Here, a detailed protocol is provided to measure ECAR and OCR in mouse bone marrow-derived lineage-negative cell populations, which include both hematopoietic stem and primitive progenitor cells (HSPCs), using the extracellular flux analyzer. This protocol describes approaches to isolate lineage-negative cells from mouse bone marrow, explains optimization of cell seeding density and concentrations of 2-deoxy-D-glucose (2-DG, a glucose analog that inhibits glycolysis) and various OxPHOS-targeted drugs (oligomycin, FCCP, rotenone, and antimycin A) used in these assays, and describes drug treatment strategies. Key parameters of glycolytic flux, such as glycolysis, glycolytic capacity, and glycolytic reserve, and OxPHOS parameters, such as basal respiration, maximal respiration, proton leak, ATP production, spare respiratory capacity, and coupling efficiency, can be measured in these assays. This protocol allows ECAR and OCR measurements on non-adherent HSPCs and can be generalized to optimize analysis conditions for any type of suspension cells.


Assuntos
Metabolismo Energético , Transplante de Células-Tronco Hematopoéticas , Animais , Glicólise , Células-Tronco Hematopoéticas , Camundongos , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...